한남대학교 LINC+ 시업단

DSAC(Data Scientist Academy & Certificate)_기초인중 2 단계_Data Process & Analysis 과정 운영안 (비대면 교육)

🚹 교육 목표 및 내용

2021.5

- ◆ 4차산업혁명시대 핵심 인재인 인공지능(AI)과 빅데이터 전문가를 통한 각 산업 적용
- ◆ 정부의 4IR 핵심인력 양성 계획에 따라 'AI기반 데이터사이언티스트' 양성 적극 추진
- ◆ 핵심인재 양성을 위한 **표준화된 단계형 교육 및 인증으로 전문가 양성 기반** 강화
- ◆ 데이터의 생산, 수집, 저장, 변형, 전처리 방법과 데이터 서버 및 클라우드 사용법
- ◆ 데이터 수집 및 관리, 변환
- ◆ 웹 크롤링 및 데이터 수집
- ◆ 데이터 정제 및 전처리
- ◆ 빅데이터 데이터 분석 라이브러리
- ◆ 머신러닝 최적화 연계 기법 기초

② 수강신청 조건 및 수강 방법

- □ Python Program 경험자(기초)/학과불문/전공물분
- □ 수강방법: 비대면 온라인 교육(Zoom 이용)

③ DSAC 교육일정

1) DSAC (28교시)

2021/06/21(월) 09:00 ~ 16:10 (7교시 교육)

2021/06/22(화) 09:00 ~ 16:10 (7교시 교육)

2021/06/23(수) 09:00 ~ 16:10 (7교시 교육)

2021/06/24(목) 09:00 ~ 16:10 (7교시 교육)

3) DSAC 인증 TEST(2시간)

학교와 협의후 결정

교육 운영 일정 및 커리큘럼 (비대면 온라인 교육)

<u></u> 일		주제	내 용	실 습
6/21(월) (7교시)	오 전	데이터분석의 이해	박데이터, 인공지능, 머신러닝 개념데이터 분석과 데이터 사이언스 범위	➤ 파이선 환경 설정
		빅데이터 분석	▶ 데이터기반 비즈니스혁신▶ 빅데이터 분석 사례	➤ 쥬피터 환경 설정
	오 후	파이선 기초	▶ 쥬피터 노트북 사용법▶ 파이선 기초 문법	➤ 파이선 기초 문법 실습
		파이선 라이브러리	numpy, pandasMatplotlib	➤ 파이썬 라이브러리 실습
6/22(화) (7교시)	오 전	데이터분석 프로세스	데이터 수집, 전처리,통계적분석	➤ 데이터 분석 전체 프로세스 실습
		시각화 처리	➤ 시각화 개념	▶ 시각화 실습
	오 후	데이터 전처리	▶ 전처리 개요▶ 데이터변환, 스케일링	➤ 데이터변환 연습
		데이터 전처리	▷ 결측치, 이상치 처리▷ 정규화, 로그 변환	▶ 정규분포, 카이스퀘어 검증, 상관관계

4 교육 운영 일정 및 커리큘럼 (비대면 온라인 교육)

일		주제	내 용	실 습
6/23(수) (7교시)	오 전	클러스터링	▶ 유사도, 코사인유사도▶ 클러스터링 개요	> matplotlib, seaborn, Folium
			➤ DBSCAN ➤ 클러스터링 비교	➤ 전력사용 클러스터링
	오후	선형회귀	선형회귀 분석선형모델을 이용한 분류	➤ 성별에 따른 몸무게 예측
			과대적합, 과소적합,일반화손실함수	➤ 모델의 일반화(규제화) 실습
6/24(목) (7교시)	오 전	선형분류	▶ 결정경계	➤ 하이퍼파라미터 튜닝
			▶ 교차검증	▶ 모델 성능 측정
	오 후	로지스틱회귀	▶ 개념, 성능비교	➤ 분꽃 이진 분류
			▶ 다항로지스틱회귀▶ 전체 과정 복습	➤ kNN 과 성능 비교